
FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSEMATRIX�ALI PINARy AND VIRGINIA VASSILEVSKAzAbstra
t. Many appli
ations of s
ienti�
 
omputing rely on sparse matrix 
omputations, thuseÆ
ient implementations of sparse matrix kernels are 
ru
ial for the overall eÆ
ien
y of these ap-pli
ations. Due to the low 
ompute-to-memory ratio and irregular memory a

ess patterns, theperforman
e of sparse matrix kernels is often far away from the peak performan
e on modern pro-
essors. Alternative matrix representations have been proposed, where the matrix A is split into Adand As, so that Ad 
ontains all dense blo
ks of a spe
i�ed form in the matrix, and As 
ontains theremaining entries. This fa
ilitates using dense matrix kernels on the entries of Ad, produ
ing bettermemory performan
e. We study the problem of �nding a maximum number of nonoverlapping re
t-angular dense blo
ks in a sparse matrix. We show that the maximum nonoverlapping dense blo
ksproblem is NP-
omplete by a redu
tion from the maximum independent set problem on 
ubi
 planargraphs. We also propose a 2=3-approximation algorithm for 2� 2 blo
ks that runs in linear time inthe number of nonzeros in the matrix. We dis
uss alternatives to re
tangular blo
ks su
h as diagonalblo
ks and 
ross blo
ks and present 
omplexity analysis and approximation algorithms.Key words. Memory performan
e, memory-eÆ
ient data stru
tures, high-performan
e 
om-puting, sparse matri
es, independent sets, NP-
ompleteness, approximation algorithms.1. Introdu
tion. Sparse matri
es lie at the heart of many 
omputation-intensiveappli
ations su
h as �nite-element simulations, de
ision support systems in manage-ment s
ien
e, power systems analysis, 
ir
uit simulations, and information retrieval.The performan
e of these appli
ations relies dire
tly on the performan
e of the em-ployed sparse matrix kernels. The poor memory performan
e of sparse matrix opera-tions on modern pro
essors is arguably the most 
ru
ial problem in high performan
e
omputing. To over
ome this memory bottlene
k, alternative, memory-friendly datastru
tures for sparse matri
es have been investigated. One 
ommon approa
h is toexploit the spe
ial substru
tures in a sparse matrix, su
h as small dense matri
es, tode
rease the number of extra load operations. In this paper, we study the problemof �nding a maximum number of nonoverlapping substru
tures in a sparse matrix,with the obje
tive of improving the e�e
tiveness of sparse matrix data stru
tures thatexploit dense blo
ks.Conventional data stru
tures for sparse matri
es have two 
omponents: an ar-ray that stores 
oating-point entries of the matrix and arrays that store the nonzerostru
ture (i.e., pointers to the lo
ations of the numeri
al entries). Exploiting spar-sity invariably requires using pointers, but pointers often lead to poor memory per-forman
e. One reason for the poor memory performan
e is that pointers 
ause anirregular memory a

ess pattern and thus poor spatial lo
ality. Another importantreason, whi
h is often overlooked, is the extra load operations. Ea
h operation on anonzero entry requires loading the lo
ation of that nonzero before loading the a
tual
oating point number. For instan
e, sparse matrix ve
tor multipli
ation, whi
h is oneof the most important kernels in numeri
al algorithms, requires three load operationsfor ea
h multiply-and-add operation. And it has been observed that this overhead is�This work was supported by the Dire
tor, OÆ
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2 A. Pinar and V. Vassilevska0BBB� x x xx xx x x xx x x 1CCCA = 0BBB� x xx x x xx x 1CCCA + 0BBB� xx x x 1CCCAA = A12 + A11Fig. 1.1. Matrix splitting.usually more 
ostly than the 
oating point operations [9℄.Re
ent studies have investigated improving memory performan
e of sparse ma-trix operations by redu
ing the number of extra load operations [9, 11, 13, 15℄. Bikand Wijsho� propose algorithms to dete
t parti
ular sparsity stru
tures of a matrix,su
h as banded and blo
ked forms [4℄. Toledo [13℄ studies splitting the matrix asA = A12 + A11, where A12 in
ludes 1 � 2 blo
ks of the matrix (two nonzeros in
onse
utive positions on the same row), and A11 
overs the remaining nonzeros, asillustrated in Fig. 1.1. Noti
e that it is suÆ
ient to store one pointer for ea
h blo
kin A12. P�nar and Heath study the reordering problem to in
rease the sizes of theseblo
ks [11℄. They propose a graph model to redu
e the matrix ordering problem tothe traveling salesperson problem. Vudu
 et al. study various blo
king te
hniquesto de
rease load operations and improve 
a
he utilization [15℄. Signi�
ant speedupsin large experimental sets have been observed, whi
h motivates sear
hing for largerblo
ks in the matrix for better performan
e. The splitting operation 
an be gener-alized to exploit various substru
tures. For instan
e, one 
an split the matrix intoA = Ad + As, where Ad 
ontains all spe
i�ed substru
tures, and As 
ontains the re-maining entries. For a spe
i�ed substru
ture, having more entries in Ad merits fewerload operations, thus better memory performan
e. This 
alls for eÆ
ient algorithmsto �nd a maximum number of nonoverlapping substru
tures in a sparse matrix. Agreedy algorithm is suÆ
ient to �nd a maximum number of nonoverlapping m � ndense matri
es when m = 1 or n = 1. However, this problem is mu
h harder whenm;n � 2.We study the problem of �nding a maximumnumber of nonoverlapping substru
-tures of a sparse matrix, whi
h we 
all the maximum nonoverlapping substru
turesproblem. We fo
us on m � n dense blo
ks as a substru
ture, sin
e they are 
om-mon in sparse matri
es arising in various appli
ations, and their usage 
an e�e
tivelyde
rease the number of extra load operations. We 
all this problem the maximumnonoverlapping dense blo
ks problem. In Se
tion 2, we de�ne the problem formallyand investigate its relation to the maximum independent set problem. We de�ne a
lass of graphs for whi
h the independent set problem is equivalent to the maximumnonoverlapping dense blo
ks problem. In Se
tion 3, we use this relation to prove thatthe maximum nonoverlapping dense blo
ks problem is NP-
omplete. Our proof usesa redu
tion from the maximum independent set problem on 
ubi
 planar graphs andadopts orthogonal drawings of planar graphs. Se
tion 4 presents an approximationalgorithm for the problem. Sin
e our te
hniques will potentially be used at appli
a-tion run-time, we are interested in fast and e�e
tive heuristi
s for the prepro
essing
ost to be amortized over the speedups in subsequent sparse matrix operations. Ouralgorithms require only linear time and spa
e, and generate solutions whose sizesare within 2=3 of the optimal for 2 � 2 blo
ks. In Se
tion 5, we dis
uss alternative



Finding nonoverlapping substru
tures of a sparse matrix 3patterns to re
tangular blo
ks. We show how the problems of �nding re
tangularand diagonal blo
ks 
an be transformed to ea
h other to 
on
lude that �nding themaximum number of nonoverlapping diagonal blo
ks is NP-hard. We show how touse the approximation algorithm for re
tangular dense blo
ks to obtain a linear 2/3-approximation algorithm for diagonal blo
ks. We also dis
uss 
ross blo
ks and theirvariations. We present some open problems in Se
tion 6 and 
on
lude with Se
tion 7.This problem has only re
ently started to draw the attention of the sparse matrix
ommunity, but has been studied under di�erent names as a 
ombinatorial optimiza-tion problem. Fowler et al. [6℄ study this problem as a geometri
 embedding problemand prove it is NP-Complete by redu
tion from the 3-satis�ability problem (3SAT)1.Berman et al. [3℄ dis
uss a similar problem as the optimal tile salvage problem. Inthe optimal tile salvage problem, we are given an pN �pN region of the plane tiledwith unit squares, some of whi
h have been removed. The task is to �nd a maximumnumber of fun
tional nonoverlapping m � n tiled re
tangles. The di�eren
e betweenour problem and the optimal tile salvage problem is that in the tile salvage problemthe tiles are allowed to be in any orientation (m � n or n �m), whereas in our 
asethe orientation is �xed (only m � n). The NP-
ompleteness proof of the tile salvageproblem by Berman et al. is based on the 
exibility in the orientation of the denseblo
k, and thus is not appli
able to our problem. Berman et al. des
ribe a polynomialtime approximation s
heme, whi
h for all Æ > 0, � = O(1=pÆ logM ), where M is theoptimal solution value, gives an (1 � �)-approximation. Their algorithm is based onmaximum planar H-mat
hing, whi
h runs in O(N1+Æ) steps, and 
an be applied to�nd square blo
ks where the two problems 
oin
ide. Baker [2℄ also has an algorithmfor square blo
ks, whi
h runs in O(8kN )-time and O(4kN ) spa
e and produ
es a(k � 1)=k-approximation. Ho
hbaum and Maass [8℄ also des
ribe an algorithm forsquare blo
ks that gives a (k � 1)=k-approximation, but runs in O(m2k2Nk2) timeto �nd m �m blo
ks on an N � N grid. Arikati et al. [1℄ study this problem as thetwo-dimensional pattern mat
hing problem, and des
ribe an approximation algorithmthat runs in O(N lgN ) time and produ
es solutions that are only O(1=plog logN )away from an optimal solution. They des
ribe another algorithm that runs in O(kN ),and produ
es solutions that are within (k � 1)=k of the optimal. For our purposes,we need algorithms that are very fast and do not require auxiliary data stru
tures.The greedy approximation algorithms we propose are very simple, spa
e-eÆ
ient, andrequire only a single pass through the matrix.2. Preliminaries. In this se
tion we de�ne the problems formally, and presentde�nitions and some preliminary results that will be used in the following se
tions.2.1. Problem De�nition. We investigate the problem of �nding a maximumnumber of nonoverlapping matrix substru
tures of pres
ribed form and orientation.Definition 2.1. An m � n pattern is a 0-1 m � n matrix �. An oriented �-substru
ture of a matrix A is an m � n submatrix A1 in A so that A1(i; j) 6= 0 if�(i; j) = 1 for 1 � i � m, and 1 � j � n. Two substru
tures A1 and A2 overlap ifthey share nonzero entry in A1 with 
oordinates (i1; j1) in A1 and (i2; j2) in A2 and�(i1; j1) = �(i2; j2) = 1.Given a parti
ular pattern �, we de�ne themaximum nonoverlapping �-substru
tures(MNS) problem as follows.1This has been pointed to us by a reviewer after the 
ompletion of this work.



4 A. Pinar and V. VassilevskaGiven an M �N matrix A and integer K, does A 
ontain K disjoint�-substru
tures?In this paper, we mostly fo
us on dense blo
ks due to their simpli
ity and their ef-fe
tiveness in speeding up sparse matrix operations. A dense blo
k of a matrix is asubmatrix of spe
i�ed size, all of whose entries are nonzero, i.e., it is a �-substru
turewhere � is the all 1s matrix. We asso
iate a dense blo
k with its upper left entry.Two blo
ks overlap if they share a matrix entry. Formally,Given an M � N matrix A = (aij), we say bij is an m � n denseblo
k in A i� akl 6= 0 for all k and l su
h that i � k < i + m � Mand j � l < j + n � N . Two m � n blo
ks bij and bkl overlap i�jk � ij < m and jl � jj < n.We de�ne the maximum nonoverlapping dense blo
ks (MNDB) problem, whi
hrestri
ts the MNS problem to dense blo
ks as follows.Given an M �N matrix A, positive integers m and n that de�ne theblo
k size, and a positive integer K, does A 
ontain K disjoint m�ndense blo
ks?2.2. Interse
tion Graphs. Although it is easy to �nd all spe
i�ed patterns ina matrix, what we seek is a subset of nonoverlapping blo
ks. In this sense, the MNSproblem is related to the maximum independent set (MIS) problem, whi
h is de�nedas �nding a maximum 
ardinality subset of verti
es I of a graph G su
h that no twoverti
es in I are adja
ent. We reveal the relation between the independent set andthe nonoverlapping blo
ks problems using interse
tion graphs de�ned below.Definition 2.2. A graph G is an interse
tion graph of the �-substru
tures of amatrix A if there is a bije
tion � between the verti
es of G and the substru
tures ofA, su
h that there is an edge in G between �(s1) and �(s2) if and only if s1 and s2overlap in A.We use G(A;m; n) to refer to the interse
tion graph of dense m � n blo
ks inmatrix A. A maximum independent set on G(A;m; n) gives a maximum numberof nonoverlapping blo
ks in A. Thus the MNDB problem 
an be redu
ed to themaximum independent set problem, whi
h is not even 
onstant fa
tor approximable.However, MNDB is not as hard as the general MIS problem, and some blo
k inter-se
tion graphs have spe
ial stru
tures, whi
h 
an be exploited for eÆ
ient solutions.For instan
e, a greedy algorithm is suÆ
ient to �nd a maximum number of nonover-lapping 1 � n and m � 1 blo
ks, sin
e these problems redu
e to a family of disjointmaximum independent set problems on interval graphs.We will now de�ne the 
lass of graphs that 
onstitute blo
k interse
tion graphs.An interse
tion graph of a set of 2� 2 dense blo
ks is an indu
ed subgraph of the so
alled X-grid whi
h 
onsists of the usual 2 dimensional grid, and diagonals for ea
hgrid square. In general, the interse
tion graph of a set of m � n dense blo
ks is anindu
ed subgraph of the Xmn grid. Below, we �rst de�ne an Xmn grid, and thenrestri
t the de�nition to de�ne the graph 
lass X�mn that represent graphs that 
anbe interse
tion graphs for matri
es.Definition 2.3. An M �N Xmn grid is a graph with vertex set V and edge setE, so that� V = fvij : 1 � i �M �m+ 1; 1 � j � N � n+ 1g



Finding nonoverlapping substru
tures of a sparse matrix 5� E = f(vij; vkl) : vij ; vkl 2 V ; ji� kj < m and jj � lj < ngIn an Xmn grid, vertex vij 
orresponds to the blo
k bij in the matrix, and edges
orrespond to all possible overlaps between blo
ks. However, not all indu
ed sub-graphs of the Xmn grid are interse
tion graphs of a matrix. For example, if bij andbi+m;j are blo
ks in the matrix, then bi+1;j; : : : ; bi+m�1;j should also be in the inter-se
tion graph to ensure the interse
tion graph represents all blo
ks. Therefore, wede�ne a graph 
lass X�mn, whi
h adds a 
losure property to an Xmn grid to 
oversu
h 
ases.Definition 2.4. A graph G = (V;E) is in the graph 
lass X�mn if and only ifit is an indu
ed subgraph of an Xmn grid and has the 
losure property so thatvij 2 V if 8i � k < i+m; j � l < j +m; 9vst : s � k < s +m and t � l < l + nThe 
losure property enfor
es that there is a vertex in the graph for ea
h denseblo
k in the matrix. Being an indu
ed subgraph of an Xmn grid guarantees thatthere is an edge for ea
h overlap. The graphs in this 
lass are exa
tly the interse
tiongraphs of the m�n blo
ks in a matrix, thus �nding a maximum independent set of agraph in this 
lass is equivalent to solving the MNDB problem of the 
orrespondingdense matrix blo
ks. This 
laim is formalized by the following lemma.Lemma 2.1. An instan
e of the MNDB problem for �nding m�n nonoverlappingdense blo
ks in a matrix A is equivalent to an instan
e of MIS for a graph in X�mn.Proof. We show a one-to-one 
orresponden
e between interse
tion graphs, andgraphs in X�mn. Ea
h dense blo
k bij 
orresponds to the vertex vij in G(A;m; n).By de�nition of the 
lass X�mn, G(A;m; n) 2 X�mn, and thus any instan
e of anMNDB problem 
an be redu
ed to an independent set problem in a graph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i <k + m and l � j < l + n for some vertex vkl in G. Observe that any dense blo
k inA must be represented by a vertex in G due to the 
losure property. Also, for anytwo adja
ent verti
es in G, 
orresponding blo
ks interse
t in A, and no other blo
ksoverlap, due to the de�nition of edges in Xmn. Thus, a maximum 
ardinality subsetof nonoverlapping blo
ks in matrix A 
orresponds to a maximum independent set inG 2 X�mn.The following lemma shows that removing a subset of the verti
es along withtheir neighbors preserves the 
hara
teristi
s of the graph, providing the basis forgreedy approximation algorithms as will be presented in Se
tion 4.Lemma 2.2. Let G = (V;E) be a graph in X�mn, S � V a subset of verti
es,and N (S) = fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then thegraph G0 indu
ed by V n (S [N (S)) is still in X�mn.Proof. Removing a vertex and its neighbors in G 
orresponds to removing allnonzeros in a blo
k in the 
orresponding matrix. The remaining graph is the inter-se
tion graph of the resulting matrix.2.3. Planar Graphs and Orthogonal Drawings. A graph G is planar if andonly if there is an embedding of G on the sphere su
h that no two edges have a pointin 
ommon besides possibly 
ommon end points. G is 
ubi
 planar if every vertex hasdegree 3.
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2 Fig. 2.1. Planar orthogonal drawingAn orthogonal drawing of a graph G is an embedding of G onto a 2-dimensionalre
tangular grid su
h that every vertex is mapped to a grid point and every edge ismapped to a 
ontinuous path of grid line segments 
onne
ting the end points of theedge. When G is planar, the edge paths do not 
ross. An example of orthogonalembedding of a planar graph is illustrated in Fig. 2.1. No two edges share a gridpoint, and no edge path 
an go through a vertex unless this vertex is an end point ofthe edge 
orresponding to the path and is an end point of the path itself. Kant [10℄showed that every planar graph G with n verti
es and maximum degree 3 
an bedrawn orthogonally on an O(n)� O(n) grid in polynomial time.The NP-
ompleteness proof in the next se
tion uses a redu
tion from the maxi-mum independent set (MIS) problem on 
ubi
 planar graphs and adopts orthogonaldrawings.3. Complexity. This se
tion proves that the MNDB problem is NP-
ompleteusing a redu
tion from the independent set problem on 
ubi
 planar graphs, whi
h isNP-
omplete [7℄. The same result has been reported by Fowler et al. [6℄, by using aredu
tion from 3-satis�ability. The te
hnique used here is signi�
antly di�erent thanFowler et al.'s. In this se
tion, we will use X� to refer to X�22 for simpli
ity. Thenext lemma explains how we 
an retain independent set 
hara
teristi
s of the problemafter transformations.Lemma 3.1. Let G = (V;E) be a graph, and u; v be two adja
ent verti
es in G,so that all neighbors of u besides v are also neighbors of v. Let G0 = (V 0; E0) be thegraph G after vertex v is removed. The size of the maximum independent set in G isequal to the size of the maximum independent set in G0.Proof. If vertex v is in a maximum independent set I, then none of its neighborsare in I. Thus I 0 = I [fvg n fug is an independent set in G and in G0, and jI 0j = jIj.The following 
orollary will be used in our NP-
ompleteness proof, as the stru
-tures in Fig. 3.1(a) arise in our 
onstru
tion.Corollary 3.2. Let G 2 X� 
ontain the graph H in Fig. 3.1(a) as an indu
edsubgraph so that all verti
es ex
ept for possibly v1; v2 and v3 have all of their neighborsin H. Then any instan
e (G, K) of MIS is equivalent to the instan
e (G0, K) of MISfor the graph G0 = G n fw1; w2g.Proof. By Lemma 3.1, we 
an remove w1 from the graph sin
e all neighbors ofx1 are neighbors of w1 as well. The redu
ed graph is illustrated in Fig. 3.1(b). Againusing Lemma 3.1, we 
an remove w2 sin
e it 
overs all neighbors of x2. Furthermore,we 
an apply the same transformation in reverse order to add verti
es w1 and w2 tothe graph in Fig. 3.1(
).
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w1 Fig. 3.1. Transformation to preserve 
losure propertiesThe following lemma des
ribes how edges of a graph 
an be repla
ed by evenlength paths, while preserving independent set 
hara
teristi
s.Lemma 3.3. Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. LetGe;k be the graph G with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vjwhere k 2 Z+ and wi are new verti
es not in the original graph. Then there existsan independent set of size K in G i� there exists an independent set of size K + k inGe;k.Proof. We present the proof for k = 1, and the result follows by indu
tion.SuÆ
ien
y: Let I be an independent set in G, then either vi 62 I or vj 62 I. Withoutloss of generality, assume vi 62 I, then I 0 = I [ fw1g is an independent set in Ge;k.Ne
essity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, andI = I 0 n fw1g is an independent set in G. Symmetri
ally, if w2 2 I 0, then vj 62 I 0, andI = I 0 nfw2g is an independent set in G. If w1; w2 62 I 0, then I = I 0 is an independentset in G.We �rst analyze the 
omplexity for 2 � 2 blo
ks for 
larity of presentation, andthen extend our result to m � n blo
ks for m;n � 2.Theorem 3.4. Problem MNDB is NP-
omplete for 2� 2 blo
ks.Proof. MNDB is 
learly in NP sin
e it is equivalent to a spe
ial 
ase of MIS.To show NP-hardness, we use a redu
tion from the independent set problemon 
ubi
 planar graphs, whi
h is NP-
omplete [7℄. We �rst embed a 
ubi
 planargraph orthogonally onto a grid as dis
ussed in Se
tion 2.3. Then we transform theembedded graph so that it is in X�. Our transformations preserve independent set
hara
teristi
s so that an independent set in the transformed graph 
an be translatedto an independent set in the original graph. Finally we use Lemma 2.1 to relate theindependent set problem on a graph in X�, to the MNDB problem.Our transformations are lo
al. We �rst enlarge the grid to make room for thesetransformations by inserting k new grid points between adja
ent points in the originalgrid. An example is illustrated in Fig. 3.2 for k = 1. After the enlargement, ea
hedge is now repla
ed by a path of k verti
es (whi
h we distinguish from the originalverti
es by 
alling them marks). Two adja
ent verti
es in the original graph are nowat a distan
e k + 1, whi
h generates a k=2 � k=2 area around ea
h vertex for lo
altransformations. This enlargement guarantees that di�erent transformations do notinterfere with ea
h other. In this proof, it is suÆ
ient to use k = 100.
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Fig. 3.2. Enlargement operation on Fig. 2.1 (right) for k = 1.

vij vij+1

vi−1j vi−1j

vij+1Fig. 3.3. Bend transformationOur transformations 
onsist of 2 steps. The �rst step guarantees that the trans-formed graph is in X�, to satisfy De�nition 2.4. The se
ond step ensures that ea
hedge in the original graph is repla
ed by an even length path after the orthogonalembedding and transformations. Together, these steps transform the independentset problem on the 
ubi
 planar graph to an independent set problem on a graph inX�, and we 
an then 
on
lude the NP-
ompleteness of the MNDB problem usingLemma 2.1.Sin
e the underlying graph is 
ubi
, its orthogonal embedding 
an be de
omposedinto paths, bends (illustrated in Fig. 3.3 (left)), and T- jun
tions (illustrated inFig. 3.4 (left)). Bends are marks for whi
h an edge 
hanges dire
tion, and T-jun
tionsare the a
tual verti
es of the 
ubi
 planar graph. While bends and T-jun
tions requiretransformations to 
onvert the embedded graph into a graph in X�, paths will not
ause su
h problems.Consider a bend vij 
onne
ted to two other marks vi�1j and vij+1. In a graph inX�, there must be an edge between vi�1j and vij+1. We 
an remove vij , and 
onne
tvi�1j and vij+1 as in Fig. 3.3 (right).Now 
onsider a T-jun
tion with vertex vij at the 
enter, as illustrated in Fig. 3.4.The neighborhood of vij 
onsists of (up to a rotation) vij�1, vij+1, and vi�1 j, noneof whi
h is a vertex in the original graph. As in the 
ase of a bend, the problemis the absen
e of edges between vij�1 and vi�1 j, and between vi�1 j and vij+1, forwhi
h the asso
iated blo
ks overlap. Also, vij must be a vertex of the original graph,and 
annot be eliminated. We 
an make the transformation illustrated in Fig. 3.4.However, the resulting graph is still not in X�, sin
e it has missing verti
es and doesnot satisfy the 
losure property. We use Corollary 3.2 to add verti
es to the graph asdepi
ted in Fig. 3.1 (in reverse order, from (
) to (a)), so that the resulting graph isin X�.By Lemma 3.3, we need ea
h path repla
ing an edge of the planar graph to haveeven length. Be
ause of the extra spa
e we 
reated for our lo
al transformations, for
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ijv

ij−1v ij+1v

i−1jv

ijv Fig. 3.4. T-jun
tion transformation
Fig. 3.5. Odd-to-even length transformation to preserve independent set 
hara
teristi
s.ea
h edge going through an odd number of marks there is a straight line segmentgoing through at least 7 marks. We repla
e this 7 vertex segment with an 8 vertexsegment, as illustrated in Fig. 3.5, to guarantee that ea
h edge is repla
ed with aneven length path.These polynomial time transformations redu
e the independent set problem for
ubi
 planar graphs to an independent set problem in a graph in 
lass X�. ByLemma 2.1, the independent set problem on a graph in X� is equivalent to a MNDBproblem in a matrix, thus 
on
luding our proof.Our proof is a template for the NP-
ompleteness proofs of alternative substru
-tures. Below, we generalize our result for arbitrary m � n blo
ks. In Se
tion 5, wewill use the same template to prove NP-
ompleteness of the MNS problem for 
rossand diagonal blo
ks.Theorem 3.5. Problem MNDB is NP-
omplete for m � n blo
ks for m;n � 2.Proof. We give a redu
tion from MIS on 
ubi
 planar graphs. Without loss ofgenerality, we assume n � maxfm; 3g. Given a 
ubi
 planar graph GP = (VP ; EP ),we �rst embed the graph onto an jVP j�jVP j grid and then enlarge this grid by k = 100to get Gs. This allows our lo
al transformations to be mutually disjoint. For 
larityof presentation, in this proof we use v(i; j) to refer to vij . In Gs, we transform ea
hT-jun
tion that has two verti
al edges to a T-jun
tion with two horizontal edges, asillustrated in Fig. 3.6(a). Then by using the transformation in Fig. 3.6(b), we makesure that ea
h path repla
ing an edge in GP has at least one horizontal edge awayfrom bends and T-jun
tions.In the next step, we map Gs to a larger 4mM � 4nN grid GL, so that v(i; j)on the small grid is mapped to v(i(4m � 2); 4j(n � 1)) on the larger grid. Thisse
ond enlargement allows us to 
ontrol the overlaps, and thus de�ne the paths of the
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(a) (b)Fig. 3.6. Transformations on Gs. (a) repla
e a T-jun
tion with two verti
al edges with anotherwith two horizontal edges. (b) add a horizontal edge to ea
h path in GP .

(a)

x,y

x+m−1,y+n−1

x+2(m−1),y+2(n−1)

x+m−1,y+3(n−1)

x,y+4(n−1)

x,y+4(n−1)

x,y

(b)

x−m+1,y+3(n−1)

x−2(m−1),y+2(n−1)

x−m+1,y+n−1Fig. 3.7. Repla
ing horizontal edges in Gs with (a) regular transformation and (b) its mirrorimage. Dark nodes are for original verti
es, and shaded nodes 
orrespond to auxiliary verti
es torepla
e an edge between them. Dark edges 
orrespond to edges in GL, and re
tangles are also drawnto illustrate overlaps.graph. For ea
h horizontal edge (v(i; j); v(i; j+1)) in the enlarged Gs, we add verti
esv(i(4m�2)+m�1; (4j+1)(n�1)),v(i(4m�2)+2(m�1); (4j+2)(n�1)), and v(i(4m�2) + (m � 1); (4j + 3)(n � 1)), as illustrated in Fig. 3.7(a). A similar transformationis illustrated in Fig. 3.8 (a) for verti
al edges. We use di�erent transformations forhorizontal and verti
al edges, sin
e m might be 2. To avoid problems due to bends, weuse the mirror images of the transformation in Figs. 3.7(a) and 3.8(a), as illustratedin, respe
tively, Figs. 3.7(b) and 3.8(b).Due to our transformation in Gs, we only have T-jun
tions with two horizontaledges. For a T-jun
tion with a \downward" verti
al edge, we 
an use transformationin Fig. 3.8(a) and mirror images of transformations in Figs. 3.7(a), as illustrated inFig. 3.9(a). For a T-jun
tion with an \upward" verti
al edge, we use the transfor-mations in Figs. 3.8(b) and 3.7(a), as illustrated in Fig. 3.9(b). Due to our initialenlargement to obtain Gs, all these transformations will be mutually disjoint.We de�ne the edge set of GL, so that it is an indu
ed subgraph of Xmn. The
losure property is satis�ed by 
onstru
tion, thus GL is in X�mn. The redu
tion willbe 
omplete when we guarantee that ea
h edge in the original 3-planar graph GP isrepla
ed by an even-length path in GL. If an edge in GP is repla
ed by an odd-lengthpath in GL, we repla
e a horizontal edge transformation in Fig. 3.7(a) with the onein Fig. 3.10, whi
h inserts four verti
es, instead of three. We 
an 
hoose this edge tobe far from a bend or a T-jun
tion to avoid unwanted overlaps.4. Approximation Algorithms. In this se
tion, we dis
uss approximation al-gorithms for the maximum nonoverlapping dense blo
ks problem. This problem hasbeen studied under di�erent names in the literature. The optimal tile salvage problemis de�ned as follows. Given a pN �pN region in the plane tiled with unit squares,some of whi
h are disfun
tional, �nd a maximum number of fun
tional m� n re
tan-gles (in any orientation). This problem is equivalent to MNDB for square dense blo
ks.
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x+2m−1,y+2(n−1)

x+2m−1,y−2(n−1)

x+m,y−n+1
x+m−1,y−n+1

x+2m−2,y−2(n−1)

(b) (c)

x+4m−3,y

x+3m−2,y−n+1x+2m−1,y−2(n−1)

x+4m−2,y

x,y

(a)

x+3m−1,y−n+1

x+2m,y−2(n−1)

x+1,y

x+4m−2,y

x,y

x+4m−2,y
x+3m−1,y+n−1

x+2m,y+2(n−1)

x+m,y+n−1

x,y

x+1,y

Fig. 3.8. Two transformations to repla
e verti
al edges in Gs. (a) The regular verti
al edgetransformation, (b) its mirror image and (
) version only used for an upward edge of a T-jun
tion.Dark nodes are for original verti
es, and shaded nodes 
orrespond to auxiliary verti
es to repla
ean edge between them. Dark edges 
orrespond to edges in GL, and re
tangles are also drawn toillustrate overlaps.
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Fig. 3.7(a) Fig. 3.7(a)(a) (b)Fig. 3.9. Transforming T-jun
tions (a) with an upward edge, (b) with a downward edge.Berman et al. [3℄ des
ribe a polynomial time approximation s
heme for the optimaltile salvage problem, i.e. for any Æ > 0, � = O(1=pÆ logM), an (1� �)-approximationalgorithm running in time polynomial in N and exponential in Æ. Here M is theoptimal solution value. Their algorithm is based on maximum planar H-mat
hingwhi
h runs in O(N1+Æ) steps for Æ > 0. Baker [2℄ also has an algorithm for squaredense blo
ks, whi
h runs in O(8kN )-time and O(4kN ) spa
e and produ
es a (k�1)=k-approximation. Ho
hbaum and Maass also des
ribe an algorithm for square blo
ksthat gives an (k � 1)=k-approximation, but runs in O(m2k2Nk2) time to �nd m�mblo
ks on an N � N grid [8℄. While these algorithms are asymptoti
ally eÆ
ient,their pra
ti
ality will be limited for our purposes. We need algorithms that are ex-tremely fast and require very limited extra memory, sin
e our methods will be usedin a prepro
essing phase, whi
h may appear as late as the appli
ation runtime, andtheir runtimes need to be amortized by the speedup in subsequent operations.Arikati et al. [1℄ study this problem as the two-dimensional pattern mat
hing prob-lem, and des
ribe an approximation s
heme inspired by the Lipton-Tarjan methodof 
omputing approximate independent sets in graphs. Their algorithm runs inO(N lgN ) time and produ
es solutions that are only O(1=plog logN ) away from
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x−2(m−1),y+2(n−1)+1x−2(m−1),y+2(n−1)

x,y+4(n−1)

x−m+1,y+3(n−1)+1x−m+1,y+n−1

x,yFig. 3.10. Even to odd length transformation.an optimal solution. They des
ribe another algorithm that uses the shifting strategyof Baker [2℄ and Ho
hbaum and Maas [8℄. Their algorithm de
omposes the matrix intosuper
olumns of width n�1, and then for ea
h i, 0 � i � k, the problem is separatedinto dis
onne
ted subproblems by removing super
olumns with numbers 
ongruent toi mod (k+1). Ea
h subproblem 
an be solved optimally in linear time, by algorithmsthat �nd a maximum independent set in tree-width bounded graphs [5, 12℄. Arikatiet al. show that using this they 
an obtain a solution whi
h is within kk+1 of theoptimal.The spe
ial 
ase for k = 2 of the Arikati et al. algorithm was also pointed out tous by one of the reviewers. The algorithm 
an be summarized as follows. Given aninput I to (2; 2)�MNDB, 
onstru
t three new instan
es I0; I1; I2 su
h that instan
e Ij
ontains all blo
ks from I ex
ept those with upper row index j mod 3. Ea
h instan
eIj 
an then be solved optimally in linear time. Consider an optimal solution B to I.Every subset of B in
luded in Ij is a solution to Ij , and sin
e ea
h blo
k from B isremoved from exa
tly one of the three new instan
es, some instan
e Ij must in
ludeat least 2=3 of the blo
ks in B. Therefore returning the maximum of the optimumsolutions to I0; I1; I2 gives at least a 2=3�approximation. This elegant algorithmgives the same running time and approximation ratio as the algorithm presented inthis paper. Nevertheless, our 2=3�approximation algorithm 
an be implemented touse slightly less extra spa
e sin
e it only needs to maintain one independent set insteadof three.We begin by presenting a simple linear time 1=2-approximation to the MNDBproblem with 2�2 blo
ks whi
h 
an be generalized for all �-substru
tures we present.The algorithm pro
eeds by �nding the leftmost blo
k in the topmost row, adding itto the 
urrent independent set, and then repeating the same operation after removingthis vertex and all its neighbors. At most two of the verti
es 
an be independent amongthose removed from the graph, and so we have a 1=2-approximation algorithm. In thisse
tion we show how to improve this approximation result by looking at an extendedneighborhood of the leftmost vertex in the uppermost row. Our algorithm is based on
hoosing a set of verti
es in the neighborhood of the leftmost vertex in the uppermostrow, so that the size of this set is no less than 2=3 of a maximum independent setin the indu
ed subgraph of those verti
es removed from the graph. This generates a�nal solution that is 2=3 of the optimal, sin
e all greedy de
isions are at least 2=3 ofthe lo
al optimal. By Lemma 2.2, the graph after removing a vertex along with all itsneighbors still has the interse
tion graph 
hara
teristi
s of the original by Lemma 2.2.We present the pseudo
ode of our algorithm below. The algorithm is based on thepro
edure BinTreeDe
ision, whi
h is depi
ted as a binary de
ision tree in Fig. 4.1.In this tree, internal nodes indi
ate 
onditions, and the leaves list the verti
es addedto the independent set. Our algorithm traverses this de
ision tree from the root to aleaf, taking the left bran
h if the label vertex is in V , and the right bran
h otherwise.



Finding nonoverlapping substru
tures of a sparse matrix 13
v8

v

v6

v4

v v4

v
v9

v

v

v8

v9 v1 v5

v5v17
v9

8

9 v10

v5 v6

v5 v6

v5 v6

v

v7

v3

v vv3 v7
v

v10

v8

1

v

v

1
v2

v2

v

v7

v4

v4

v

5

v

v

vFig. 4.1. De
ision tree for algorithm MNDB-APX. v 
orresponds to the leftmost vertex in theuppermost row, and the neighboring verti
es in the X-grid are marked in Fig. 4.2. We take the leftbran
h if the label vertex is in V , and the right bran
h otherwise. We pro
eed until we rea
h a leaf,whi
h 
ontains the set S that will be added in the independent set.
?

?

??

???

? ?

?

?

v98v

1u 4v 5v 6v 7v 2u

3vv2v1v

?

?Fig. 4.2. Vertex neighborhood 
onsidered for ea
h 
all to BinTreeDe
ision. The positions viare used in the de
ision tree, while the positions ui are only used in the analysis.For instan
e, at the root of the tree, we will take the left bran
h v5 is in the graph,and the right bran
h if it is not. The leaves 
ontain the sets S that will be added inthe independent set.Algorithm MNDB-APXI  ;while V 6= ;v  leftmost vertex on the uppermost rowS  BinTreeDe
ision(v)I  I [ Sremove S and its neighborhood from Gendwhilereturn I



14 A. Pinar and V. VassilevskaLemma 4.1. Algorithm MNDB-APX runs in linear time in the number of blo
ksin the matrix.Proof. Ea
h iteration of the algorithm requires a traversal of the binary de
isiontree from the root to a leaf, whi
h takes at most 8 steps, thus O(1) time. Also at leastone vertex is removed from the graph at ea
h iteration. Thus the time for the de
isionpro
ess is linear in the number of verti
es in the graph. The only other operation thata�e
ts the 
ost is �nding the leftmost vertex in the uppermost row. In a prepro
essingstep one 
an go through the matrix in a left to right fashion and store pointers to theblo
ks so that vij appears before vkl i� i < k or i = k and j < l. After this it takes
onstant time to �nd the 
urrent leftmost vertex on the uppermost row.Lemma 4.2. The size of the maximal independent set returned by AlgorithmMNDB-APX is no smaller than 2=3 of the size of maximum independent set on theinterse
tion graph.Proof. The proof is based on 
ase by 
ase analysis. We show that BinTreeDe
i-sion(v) of Fig. 4.1 always returns an independent set S su
h that N (S) 
ontains noindependent set larger than 1:5 jSj, where N (S) denotes the neighborhood of S, i.e.,the set of verti
es in S or adja
ent to a vertex in S. Below we examine the binarysear
h tree 
ase by 
ase:v5 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v5 2 Vv1 62 V By the 
losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V . In this 
ase, if one of v9 orv8 is not in V , then S = fv5; v6g, sin
e their neighborhoodhas MIS size at most 3. Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N(S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N(S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N(S) has MIS size at most 3.v3 62 V S = fv; v7g, and N(S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N(S) has MIS size at most 3.v2 62 V By the 
losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a 
lique, and the MISis of size 1.v7 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V , and if one of v8 or v9 isnot in V , then S = fv1; v5g, and N(S) has a MIS size atmost 3. Otherwise if v8; v9 2 V , then S = fv; v7; v8; v9g,and N(S) has MIS size at most 6.Theorem 4.3. Algorithm MNDB-APX is a linear time, 2=3-approximation al-gorithm for the MNDB problem.Proof. Follows dire
tly from Lemma 4.1 and Lemma 4.2.A generalization of our 2/3-approximation algorithm for larger blo
ks is still underinvestigation. We expe
t the runtime and the approximation ratio to depend on theblo
k size.
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tures of a sparse matrix 150� a00 a01 a02a10 a11 a12a20 a21 a22 1A 0BBBB� a02a01 a12a00 a11 a22a10 a21a20 1CCCCA 0BBBB� a00a10 a01a20 a11 a02a21 a12a22 1CCCCA(a) (b) (
)Fig. 5.1. Matrix rotations. (a) the original matrix, (b) after Rotation 1, (
) after Rotation 2.5. Alternative Substru
tures. We have so far fo
used our dis
ussions on �nd-ing dense re
tangular blo
ks in a matrix. In this se
tion, we will dis
uss generalizationsof our results to alternative substru
tures that might be exploited to improve memoryperforman
e. We will �rst dis
uss diagonal blo
ks. Then we will introdu
e a 
rosssubstru
ture and its variants, and prove that the MNS problem is NP-
omplete for�nding these substru
tures.5.1. Diagonal Blo
ks. In many appli
ations, nonzeros of the sparse matrix arelined around the main diagonal in the form of long diagonals. This makes diagonalblo
ks a ni
e alternative to re
tangular blo
ks. We de�ne a diagonal blo
k as follows.Given an M �N matrix A = (a(i; j)), we say d(i; j) is an m� n diagonal blo
k in Ai� 8k; l; i � l < i+m; 0 � k < n; a(l + k; j + k) 6= 0:To �nd diagonal blo
ks in a sparse matrix, we 
an rotate the positions of the ma-trix entries to transform diagonal blo
ks to re
tangular blo
ks and vi
e versa, so thatour results for re
tangular blo
ks 
an be applied to diagonal blo
ks. Our rotationsare depi
ted in Fig. 5.1, and de�ned as follows.Rotation 1: Given an M �N matrix A, its rotated matrix AR is an (M +N �1)�Nmatrix so that� AR(i+ N � j � 1; j) = A(i; j) for i = 0; 1; : : :M � 1 and j = 0; 1; : : :N � 1.� All other entries of AR are 0.Rotation 2: Given an M �N matrix A, its rotated matrix AR is an (M +N �1)�Nmatrix so that� AR(i+ j; j) = A(i; j) for i = 0; 1; : : :M � 1 and j = 0; 1; : : :N � 1.� All other entries of AR are 0.Theorem 5.1. Given matrix A, let A1 and A2 be its rotated matri
es underRotation 1 and Rotation 2, respe
tively. d(i; j) is a diagonal blo
k in A, if and onlyif d(i+N � j � 1; j) is a re
tangular blo
k in A1, and d(i; j) is a re
tangular blo
k inA, if and only if d(i+ j; j) is a diagonal blo
k in A2Proof. By de�nition d(i; j) is a diagonal blo
k in A if and only if for all k; l: 0 �k < m; 0 � l < n, A(i+k; j+l) 6= 0. This translates to A1(i+k+N�j�l�1; j+l) 6= 0with Rotation 1, and A2(i+ k+ j + l; j+ l) 6= 0. Ne
essity follows from the de�nitionof a diagonal blo
k, and suÆ
ien
y follows from the fa
t that the only nonzeros in A1and A2 are those de�ned by nonzeros in A.Corollary 5.2. Algorithm MNDB-APX, 
omposed with Rotation 1, is a lineartime 2=3-approximation algorithm for the problem of �nding a maximum number ofnonoverlapping diagonal blo
ks.



16 A. Pinar and V. Vassilevska0� xx x xx 1A 0� x xxx x 1A 0� x xxx x 1A(a) (b) (
)Fig. 5.2. (a) Cross blo
k, (b) diagonal 
ross blo
k, (
) jagged 
ross blo
kCorollary 5.3. Given a matrix A and a positive integer K, de
iding if A hasat least K nonoverlapping diagonal blo
ks is NP-
omplete.5.2. Cross Blo
ks. Various regular substru
tures in a sparse matrix 
an beexploited to improve memory performan
e of sparse matrix 
omputations. One pos-sibility is the 
ross blo
ks depi
ted in Fig. 5.2(a). We will identify a 
ross blo
k withits 
enter, that is, we say 
(i; j) is a 
ross blo
k in a matrix A if A has nonzeros atpositions (i; j), (i; j � 1),(i � 1; j), (i; j + 1), and (i + 1; j). Below, we prove that�nding a maximum number of nonoverlapping 
ross blo
ks is NP-
omplete by usingour proof of Theorem 3.4 as a template.Theorem 5.4. Given a matrix A and a positive integer K, de
iding if A has atleast K nonoverlapping 
ross blo
ks is NP-
omplete.Proof. This problem 
an be redu
ed to the independent set problem, and thusit is in NP. For the NP-
ompleteness proof we use a redu
tion from the independentset problem on 
ubi
 planar graphs. First we embed the 
ubi
 planar graph ontoa grid and then enlarge the grid as we did for the proof of Theorem 3.4. We 
anrepla
e ea
h vertex on this grid with a 
ross pattern in the matrix. Formally, for anM �N grid, we de�ne a 2M + 1� 2N + 1 matrix, where grid point (i; j) is repla
edby a 
ross 
entered at (2i + 1; 2j + 1) in the matrix. A does not have any othernonzeros besides those in 
ross blo
ks 
orresponding to vertex points. There are no
ross blo
ks in A, besides those representing grid points. Also observe that unlike the
ase for re
tangular blo
ks, bends and T-jun
tions do not 
ause any problems, sin
ethe 
rosses to the left and below the 
orner vertex of a bend do not overlap.The only problem is to make sure ea
h edge in G is repla
ed by an even lengthpath, for whi
h we use the transformation in Fig. 5.3. This transformation repla
es a
hain of odd length with a 
hain of even length to guarantee ea
h edge in G is repla
edwith even length paths.We 
an use matrix rotations to redu
e the problems of �nding other blo
ks inFig. 5.2 (b) and (
) to the problem of �nding 
ross blo
ks as in Fig. 5.2(a). Forinstan
e, Rotation 1 transforms jagged 
rosses, whi
h are illustrated in Fig. 5.2(
) toregular 
rosses, and 
(i; j) is a diagonal 
ross blo
k in anM�N matrix, i� 
(i+N�j�1; j) is a jagged 
ross blo
k (Fig. 5.2(
)) in its rotated matrix. Similar transformations
an be used to transform 
ross blo
ks to other jagged blo
ks, and vi
e versa.Rotation 3, as de�ned below and depi
ted in Fig. 5.4, transforms diagonal 
rossblo
ks of Fig. 5.2(b) to regular 
ross blo
ks.Rotation 3: Given an M � N matrix A, its rotated matrix AR is an (M + N � 1)�(M + N � 1) matrix so that� AR(i� j +N �1; i+ j) = A(i; j) for i = 0; 1; : : :M �1 and j = 0; 1; : : :N �1.� All other entries of AR are 0.These transformations 
an be used to prove NP-
ompleteness of de
iding if thereare a spe
i�ed number of nonoverlapping jagged and diagonal 
ross blo
ks in a matrix.
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Fig. 5.3. Odd- to even-length path transformation for 
ross blo
ks.0� a00 a01 a02a10 a11 a12a20 a21 a22 1A 0BBBB� a02a01 a12a00 a11 a22a10 a21a20 1CCCCA(a) (b)Fig. 5.4. Matrix Rotations. (a) the original matrix, (b) after Rotation 3.For brevity, we are not giving the details here. As an approximation solution, thegreedy algorithm that 
hooses the leftmost blo
k in the upper most row will yield a1=2�approximation algorithm for �nding 
ross blo
ks and all its variations.6. Open Problems. This work studies a new problem for the sparse matrix
omputations 
ommunity, and brings forth many open problems. One interestingfamily of problems is the design of heuristi
s for larger blo
ks and di�erent substru
-tures, and developing better approximation algorithms. As we dis
ussed in Se
tion 4,it may be possible to generalize our 2=3-approximation algorithm for larger blo
ks,where the runtime 
omplexity is likely to depend on the blo
k size. Another openproblem is whether one 
an improve the approximation ratio by looking at a largerneighborhood of the leftmost vertex of the uppermost row. Finally, one may sear
h fordi�erent heuristi
s to apply to di�erent dense substru
ture problems. For instan
e,although the greedy left-uppermost blo
k heuristi
 still gives a 1=2-approximation,the neighborhood stru
ture of the 
ross blo
k is fairly di�erent from that of the re
t-angular blo
k, and thus our 2=3-approximation algorithm 
annot be applied dire
tly.Another approa
h to redu
ing memory indire
tion is sele
tively repla
ing stru
-tural zeros of the matrix with numeri
al zeros. Doing this would improve memoryperforman
e and may result in signi�
ant speedups, even though the number of 
oat-ing point operations may in
rease [15℄. This te
hnique 
alls for another interesting
ombinatorial problem. In this 
ase, we need to 
hoose blo
ks to make sure all nonze-ros are 
overed, and we try to do this by using as few blo
ks as possible. We 
all thisproblem the minimum blo
k 
over problem and de�ne it as follows.Given a sparse matrix A, and an oriented substru
ture �, pla
e a



18 A. Pinar and V. Vassilevskaminimum number of substru
tures on A, so that all its nonzeros are
overed.Fowler et al. [6℄ proved that this problem is NP-
omplete. Nevertheless, goodapproximation algorithms for 
overing sparse matri
es would be valuable.Finally, in this paper we 
onsidered �nding only one spe
i�ed stru
ture in thematrix. However, it is possible to split a matrix into three or more matri
es (e.g.,A = A2d +A1d +As), so that ea
h matrix 
ontains a di�erent substru
ture. Vudu
 didsome empiri
al work on splitting into multiple matri
es [14℄. In su
h a de
omposi-tion, the obje
tive is minimizing the total number of blo
ks in all matri
es. Clearly,this problem is mu
h harder, and even good approximation algorithms (provably orpra
ti
ally) would be valuable.7. Con
lusion. We studied the problem of �ndingmaximumnumber of nonover-lapping substru
tures in a sparse matrix, whi
h we 
alled the maximum nonoverlap-ping substru
tures problem. Su
h substru
tures 
an be exploited to improve memoryperforman
e of sparse matrix operations by redu
ing the number of memory indi-re
tions. We fo
used on m � n dense blo
ks as a substru
ture (maximum nonover-lapping dense blo
ks problem) due to their frequen
y in sparse matri
es arising invarious appli
ations, and to their e�e
tiveness in de
reasing extra load operations.We investigated the relation between the maximum independent set problem and themaximumnonoverlapping substru
tures problem, and de�ned a 
lass of graphs wherethe independent set problem is equivalent to the maximum nonoverlapping denseblo
ks problem. We used this relation to prove the NP-
ompleteness of the maximumnonoverlapping dense blo
ks problem. Our proof used a redu
tion from the maximumindependent set problem on 
ubi
 planar graphs and adopted orthogonal drawings ofplanar graphs. We dis
ussed generalizations of our results to alternative substru
turesand observed the relation between diagonal and re
tangular blo
ks to show that thetwo MNS problems are equivalent and one 
an be redu
ed to the other by a matrixtransformation. We also dis
ussed 
ross blo
ks and proved that the MNS problem isNP-
omplete for 
ross blo
ks.We presented an approximation algorithm for the maximumnonoverlapping denseblo
ks problem for 2 � 2 blo
ks. Our algorithm requires only linear time and spa
e,generates solutions whose sizes are within 2=3 of the optimal, and 
an be used toapproximate MNS on diagonal blo
ks as well.A
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